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Abstract

Heap allocation with copying garlbage collection is a general storage nmamagemtet ('chIiqu, fo.r
modern programming languages. It is believed to have poor Ineiiory subsv 'Ieni pl('rforlanliice.
To investigate this, we conducted an in-depth study of the memory subsystem performance of
heap allocation for memory subsystems found( on many machinos. We studied th, prforimaice of
mostly-functional Standard MNL programs which made heavy use of heap allocation. We found that
most machines support heap allocation poorly. However, with the appropriate memory subsystem
organization, heap allocation can have good performance. The memory subsystem property crucial
for achieving good performance was the ability to allocate and initialize a new object into the cache
without a penalty. This can be achieved by having subblock placement with a subblock size of one
word with a write allocate policy, along with fast page-mode writes or a write buffer. For caches
with subblock placement. the data cache overhead was under 9% for a 64K of larger (lata cache:
without subblock placement the overhead was often higher than 50%.



1 Introduction

Heap allocation with copying garbage collection is widely believed 1o have poor memory subsvstenm
performance [30. 38. 48, 49. 50]. To investigate this. we conducted an extensive study of memory
subsystem performance of heap allocation intensive programs on memory sulbsystem organizations
typical of many workstations. The prograns. compiled with the SML/N.J compiler [4]. do tremen-
dous amounts of heap allocation, allocating one word every 41 to 10 instructions. The programs used
a generational copying garbage collector to manage their heaps. To our surprise, we found that
for some configurations corresponding to actual machines, such as the DECStation 5000/200. the
memory subsystem performance was comparable to that of C and Fortran programs [12]: programs
ran only 3 to 13% slower due to data cache misses than they would have with an infinitoly fast
memory. For other configurations. the slowdown (ue to (lata cache misses was often hier Ihani
350%.

The memory subsvsteun features important for achieving good performanace with healp allocat ion
are subblock placement with a subblock size of one word. coml)ine(l with write-allocate on write-
miss, page-mode writes, and cache sizes of 32K or larger. Heap allocation l)erforms poorly on
machines whose caches are smaller than the allocation area of the programs (256K or larger for
the benchmarks studied here) and do not have one or more of the features mentioned above: this
includes most current workstations.

Our work differs from previous reported work [30. 38. 48. 49. 50] on niemorv subsystem per-
formance of heap allocation in two important ways. First. previous work iised( the or(mWll min.I.
ratio as the performance metric. which is a misleading indicator of performance. Tlhe overall miss
ratio neglects the fact that rea(l an(i write, misses may have (lifferent costs. .\lso. tdhe overall niiss
ratio does not reflect the rates of reads anmd writes, which may substantially affect plrformnanl('.
We use memory subsystem contribution to cycles per instruction ((PI) as our performance met ric.
which accurately reflects the effec' of the muemnory ' sul)bsvystem on program running tine. Seco'(l.
previous work did not model the entire memory subsystem: it concentrate(l solely on (cacches. Mein-
ory subsystem features such as write buffers and page-mnode writes interact with the costs of hits
and misses in the cache and should be simulated to give a correct picture of memory subsystem
behavior. We simulate the entire memory subsystem.

We did the study by instrumenting programs to produce traces of all memory references. We fed
the references into a memory subsystem simulator which calculated a performance penalty (lue to
the memory subsystem. We fixed the architecture to be the MIPS R3000 [28] and varied cache con-
figurations to cover the design space typical of workstations such as DECStations, SPARCStations.
and HP 9000 series 700. We studied eight substantial programs.

We varied the following memory subsystem parameters: cache size (8K to 512K). cache block
size (16 or 32 bytes), write miss policy (write allocate or write no-allocate), subblock placement
(with and without), associativity (one and two way). TLB sizes ( I to 64 entries), write buffer depth
(1 to 6 deep), and page-mode writes (with and without). We simulated only split instruction and
data caches. i.e.. no unified caches. We report data only for write-through caches biut the results
extend easily to write-back caches.

Section 2 gives background information. Section 3 describes relate(d work. Section I (lescribes
the simulation methods, the benchmarks, and the metrics used to measure memory subsystem
performance. Section 3 presents the results of the simulation studies. an analysis of those results.
validation of those results. and an analytical model which is used to exten(l the results to programs
with different allocation behavior. Section 6 suggests promising areas for future work. Section 7
concludes.



2 Background

The following sections describe memory subsystems. copying garbage collection. S NIL. and the
SML/NJ compiler.

2.1 Memory subsystems

This section reviews the organization of memory subsystems. Terminology for memory subsYstenis
is not standardized; we use Przybylski's terminology [39].

It is well known that ('PUs are getting faster relative to) D)A NI memory chips [37]: main
memory cannot supply the ('PU with instructions and data fast onough..\ A olution to this i)rOWl)l,,ui
is to use a cache. a small fast memory placed betIween tlie (' P aind main niemiiorv that hatl.'s a
small subset of memory. If the (CPU reads a ineitmory locatioln which is ill tlihe cache. thle vaiIi is
returned quickly. Otherwise the ('PI must wait for tlie value to be I•ltched from timaiin 1iereiiury.

Caches work by reducing the average memory access time. This is possible since miemory
accesses exhibit spatial and lemporal locality. Temporal locality means that. a. memory location
that was referenced recently will probably be referenced again soon and is thus worth storing in
the cache. Spatial locality means that a memory location near one which was referenced recently
will probably be referenced soon. Thus. it is worth moving the neighboring locations to the cache.

2.1.1 Memory subsystem organization

This section describes cache organization for a single level of caching..\ A'ache is divided iiito b,.•'.,
each of which has an associated taq. A cache block represent M a block oI iieinory, iHi, leag for a
cache block indicates what memory block it holds. (Cache blocks are gromiped into s( Is. A miemory
block may reside in the cache in exactlY one set. but maY reside i aiiv bh)lock withut th, le,. .
cache with sets of size n is said to be n-way a.'ssw'iahir. If it=/. tle cache is called dirT '- map/od.
Some caches have valid bits. to indicate what sections of a. block hold valid data. A -subblrwk is
the smallest part of a cache with which a valid bit is associated. In this paper. subblock phlc(li( titt
implies a subblock of one word, i.e., valid bits are associated with each word. Moreover, on a read
miss, the whole block is brought into the cache not just the subblock that missed. Przylylski [39]
notes that this is a good choice.

A memory access to a location which is resident in the cache is called a hit. Otherwise. the
merrory access is a miss.

A read request for memory location m causes m to be mnapped to a set. All the tags and valid
bits (if any) in the set are checked to see if any block contains ti. If a cache block contains ti. tle
word corresponding to m is selected from the cache block. A read miss is handled by cop)ying the
missing block from the main memory to the cache.

The way write requests are handled depends upon the writc policy. The write policy describes
whether writes to the cache go immediately to main memory. In a write-through cache. writes
to the cache immediately go to main memory. In a write-bmck cache, writes to the cache (0o not
immediately go to main memory: they are just written to the cache. The writes eventually go
to main memory when a memory block is removed from the cache. Write-back caches muse less
bus bandwidth than write-through caches. because multiple writes tro the same locatiou may be
coalesced into one write to main memory by the write back cache. whereas all I lie writes wumhl
go to main memory with a write through cache. See [27] for a discussion of the relative merits of
write back and write through caches.

A write hit is always written to the cache. '[here are several policies for handling a write miss.
which differ in their performance penalties. For each of the policies. the actions taken ()i a write
miss are:

I. write-no-allocate:

D Do not allocat v a. hlock in tIhle cache



*Senid thle wvrite to main miemor~y. wi thoiit Jpiittiiig t he write ill I lie cache.

2. write-allocate. no-subblock p~lacemneit:

* Allocate a block in the cache.

& Fetch the corresponding miemorY bl)ock fromi main mnemor~y.

* Write thle word to the cache (and to niemory if" write throi ogh ).

3. write-allocate. subblock placemient':
If the tag matches blli the validl 1it is oil:

o Write t.he word to t lie cache (and to ;iietnorv it' write Ii hroii gli.

If the tag (hoes not miatch:

"* Allocate a block in the cache.

"* Write the word to the cache (and to memory if write through).

"* Invalidate the remaining words in the b~lock.

W~rite allocatf/subblock ptacement wil! have a lower write C iss penalty thain wrifi (11ocat(/,lO
subblock placFinent since it avoids fetching a miemorY block froin main invienorY. Ili addoit ion. it
will have a lower lpenaltv t han irr',ih no (Illoduff if t lie wriiItten wordl is roadIh ho ire beilng evictedl
from thle cachie. See .Jouppi [27] for imiore in format ion onl write-inuiss policite".

A miss is at cowiiulsecij miii s if it is dute to a minienorv block binl' ; ii g ac,0s I()[ I horii' first I ili i.
miss is a capacity minSS if it res ii]ts from t he cache not being large enlough to holdd all tihe n11iemorv
blocks used by' a p~rogranm. The capacity misses for a. given cache size corres pond to t lie in isses in
a fully associative cache of the samine size with ;ian LIII relplaceiniii po101icy* in ins ithe compin ~lsorv'
misses. It is a conflict mniss if it result~s from two miemiory blocks mapping to the samne set. [25]

The memory subsystem bandwidth may be increased lby uising sep~arate caches for inst ruct ions
and data. This is called a split instruction-data cache. The memnory bandwidth is increasedl since a
data access and an instruction fetch may be handled at the same time. A cache where instructions
and data gc to the same cache is called a unified cache. This paper p~resenits results only for split
instruction- data caches.

A write buffer may be used to reduce the cost. of writes to main mnemory. A 1crli( buff"' is a
queue containing writes that are t~o be sent to main zinemory. When thle ('PIT (foes a write, the
write is placed in the write buffer and the CPU continues without waiting for the write to finish.
The write buffer retires entries to main memory using free memory cycles. There are sit ulations
when the write buffer is not fully effective in preventing stalls on wr'ites to main memory. First. if
the CPU writes to a full write buffer, the CPU must wait for an entry to become available in the
write buffer. Second. if the CPU reads a location which is queued tip in the write buffer, tile CPU
may need to wait until the write buffer is empty. Third. if thle ('PIT issues a read t~o main imemory
while a write is in progress. thle CPIU must wait for the write to finish.

Main memory is divided into DRAM pages. Paqe-niode u'rilcs redulce thle latency of wriles to
t~he same DRAM\ page when there are no intervening memory accesses to aniot her *l)11A.NI page.
Page-mode writes work as follows. I)RANs are organizedl imitertiallY as arra s. and all the locations
on a DRAM page reside on thle same row in the DR AMs which implementt miain ineniorv* . T'his fact.
can be used to speed lip a sequence of writes to one DRAM pae k DRAMN is iij)(la~ted in a read-
modify-write cycle: an array row is latched into a row buffer. the row buffer is miodlifiedl. and liten
written back to the arra ' . Aý sequence of writes to t~he same Dl? AN page canl iipolate t he row whiile
it is held in the row buiffer. ando avoidl the read amid writ~e cvcles for all bilt, the first and last writes.
respectively. This im proves write' speed signi hcatl.y v. For exaninple. out a )E( St at iou 5000)/200. a

non- page- mode write takes 5 c ive. hile a. pago-inode, write takes I cycle. \laill llieniorv is sailo

H'Rcall stibhtock %izv iý aimw~ud hif kv I word.



Z check for heap overflow
cmp alloc+12,top
branch-if-gt call-gc
% write the object
store tag,(alloc)
store ra,4(alloc)
store rd,8(alloc)
%. save pointer to object
move alloc+4 ,result
% add 12 to alloc pointer
add alloc,12

Figure 1: Pseudo-assembly code for allocating an object

to be operating in page mode when DRAM rows are held in row bulfers across inemorv accesses.
It is thrown out of page mode when a memory access to a. different DRAMI page is made. It may
also be thrown out of page mode for other machine-specific reasons (such as refreshes). Page-mode
writes are especially effective at handling writes with high spatial locality. such as t hose sei, when
saving registers at a procedure call or when doing sequential allocation.

2.1.2 Memory subsystem performance

This section describes two metrics for measuring the performance of memory subsystenms. One
popular metric is the cache miss ratio. The cache miss ratio is the number of memory accesses
which miss divided by the total number of memory accesses. Since differeut kinds of memory
accesses usually have different miss costs, it is useful to have miss ratios for each kind of access.

Cache miss ratios alone do not measure the impact of the memory subsystem on overall system
performance. A metric which better measures this is the contribution of the memory subsysm y ut to
CPI (cycles per useful instruction2 ). CPI is calculated for a program as number of ('PU cycics to
complete the program / total number of useful instructions executed. It measures how efficient ly tei
CPU is being utilized. The contribution of the memory subsystem to CPI is calculated as number of
CPU cycles spent waiting for the memory subsystem / total number of useful instructions c1'ccuted.
As an example, on a DECStation 5000/200, the lowest CPI possible is 1, completing one instruction
per cycle. If the CPI for a program is 1.50, and the memory contribution to CPI is 0.3, 20% (0.3/1.5)
of the CPU cycles are spent waiting for the memory subsystem (the rest may be due to other causes
such as nops, multi-cycle instructions like integer division, etc.). CPI is machine dependent since
it is calculated using actual penalties.

2.2 Copying garbage collection

A copying garbage collector [22. 14] reclaims an area of memory by copying all the live (non-
garbage) data to another area of memory. This means that all data in the garbage-collected area
is now garbage, and the area can be re-used. Since memory is always reclaimed in large contiguous
areas, objects can be sequentially allocated from such areas at the cost of only a few instructions.
Figure 1 gives an example of pseudo-assembly code for allocating a cons cell. ra contains the car
cell contents, rd contains the cdr cell contents. alloc is the address of the next. free word in the
allocation area, and top contains the end of the allocation area.

'All instructions besides nops are consideredi as usefl. A\ nop ( wnII operation) instruictio is at wol rar(-(ou Irolled

pipeline stall.



The SML/ NJ compiler uses a simple generational copying garbage collector [2] .lMemorv is
divided into an ohl generation an(l ;un allocation area. New objects areP c'rad in 11hv allocation
area; garbage collection copies the live objects in the allocation area to Ihe old general tion ireing lip

the allocation area. Generational garbage collection relies on the fact that most allocated objects
die young; thus most objects (about 99% [.1. p. 206]) are not copie(l from t le allocation area. This
makes the garbage collector efficient, since it works mostly on an area of tietiory w\here it is very
effective at reclaiming space.

The most important property of a copying collector with respect to ineiory sttbsvstem behavior
is that allocation initializes memory which has not been touched in a long Iinme and is Ilhis itnlikel v
to be in the cache. This is especially trite if tle allocation area is targ, 'ela ixo Ithe size of, lhe
cache since allocation will knock everyvthing otit of t lie cache. This iieallis lhat caches whtichi ('allut
hold the allocation area will incutr a large itfin ber of write fiiisses.

For example consider the code in ['igtIre 1. .\ssttttte lthat a cachel writeli.i.• c(u'tI- 16i (T1i! ,vcl,,
and that the block size is I words. Oti average. oevrY folit lt word allmh'aled catse. a wrile i.

Thus. the average memory subsystetn cost of allocating a word on t Ite hieap) is I cycles. 'I'lie average
cost for allocating a cons cell is seven cycles (at one cycle per instruction) plis 12 cycles for the
memory subsystem overhead. Thus, while allocation is cheap in terms of instrtiction counts. it ntay
be expensive in terms of machine cycle counts.

2.3 Standard ML

Standard NIL (SM L) [35] is a call-by-valtie. lexically scoped language wilhi iglier-t-rder fit'('li us.
with many of the features (leeneed good bv tihe progra ititling langtiage (0o111itil\ilx. I li a• -a rlaiu,
collection to automate the management of hieap storage. T' his oli ninattes two ( o'ititi n indis (if
programming errors that occur with explicit storage tuatiageiont. ,nenior'v leaks attd (langling
pointers. Memory leaks occur when mieitiory is nlever (lallochat(l. and (langlitig ilit•('is ocil r
when memory is deallocated too soon. SML is statically tvpe(I. so utany programming errors are
caught at compile-time. The type system is polymorphic. an(l typles are inferred aitlotiatically
by the compiler. so the type system is flexible yet not an impediment to the programmer. The
language is provably safe, that is, there are no holes in the type system and a program always has a
well-defined behavior. SML has a sophisticated module system to support the development of large
programs. The module system provides for static type-checking of the interfaces between modules.
as in Ada and Modula-3. It has a dynamically-scoped exception mechanism to allow programs to
handle unusual conditions.

SML encourages a non-imperative programming style. Variables cannot be altered once t lhey
are bound, and bv default .data structures cannot. be allered once th11ev are crealt d. lisp's rplaca
and rplacd do not exist for the default definition of lists in SIML. The only kinds of assignable (lata
structures are ref cells and arrays '. which must be explicit.ly declared. To emphasize the point.
assignments are permitted but discouraged as a general programming style. The implications of
this non-imperative programming style, for compilation are clear: SML programs tend to dto more
allocation and copying than programs written in imperative languages.

SML is most closely related to Lisp and Scheme [.11]. lml)lenmentation tech ni(lies for one of' these
languages are mostly applicable to the other languages. with tie following caveats: SML programs
tend to be less imperative than Lisp or Scheme programs and Scheme and SM L programs uise
functions calls more frequently than Lisp. since recursion is the usual way to achieve iteration itl
those languages.

2.4 SML/NJ compiler

The SNIL/N.J compiler [.1] is a pibliclv available co(npihr for S.I\I,. We\ used vx'rsion 0.91. I'hIe
compiler concentrates on making allocatiott cheap and t'inctiotl calls fast. .\lhocalimu is do•he in-

.itho luglh the 1alliigula• dchliiti tt omI• l I ,arravs. all ilpulAcrII.nlll l i" hIk\, ,il';IV".



line, except for the allocation of arrays. ,Aggressive flunclioll inliing is ulsed to ( eli inate I 'ell l' i•ltis
calls and their associated overhead. Function argunients are passed in registers whel i)os.il)l(.
and register targeting is used to iniinlize register shiuffling at finnction calls. A split caller/callee-
save register convention is used to avoid excessive spilling of registers [,]. lhe conipiler also does
constant-folding, limited code hoisting. uncu rrying-, anl instnrction schednhling.

The most controversial (design decisiolt in tlhe cont piler was to allocate l)rood(lure acttivalio)u
records on the heap instead of the stack [1. 6]. Ini principle. the presence of hiighor-or(ler fuinctliois
means that procedure activation records must l)e allocalted on the hea p. Wil l a siitable al lialysis.
a stack can be used to store most activationl recor(Is [:1]. owever. usinlg oIly ar hIea[p .itinplifies
the compiler, the run-tinie systein [3]. and the inipleneiitationi of firsi-class colit ililualoius [23j.
The decision to use only a heal) was controversial becallse it ,leval tIY ilicreases lhe allillllit of I" eap
allocation, which is believed to cause poor mienlory slibl stenl plerl'orlila lice.

3 Related Work

There have been many studies of the cache behavior of systems using heap allocation and some
form of copying garbage collection. Peng and Sohi [38] examined the data cache behavior of" sliall
Lisp programs. They used trace-driven simulation, and proposed an .\LLO(CATE inist'wdilo, folr
improving cache behavior, which allocates a block in the cache without fetching it front meimory..
Wilson et al. [48. 49] argued that cache performance of progranis with ii etrational gar'bage col-
lection will improve substantially when tie yvonll.ges.? (enera(tioll lit' II tihe cache. I(K oovii a tII
al. [30] studied the effect of cache orgallizaliOli on11 collihiliatlir ti'alih ir(tiuiclitill. ai iliiftpllii,'il a-

tion technique for lazy functional progra ill lihing lallfiglages. Thwey o i(xred ilh(l Itillpi alicl 'i t ,
write-allocate policy with subblock f)laceinent for imn proving heapl allocation. Zorii [50] sxiudli(hd
the impact of cache behavior oui tile perfornimilice of' a) (oi llilOli l isp svt em. whli xltl)-a in h-ct pv
and mark-and-sweep garbage collection algorithms were uised. Hie colchicded I hat wlien plrogranis
are run with mark-and-sweep they have substantially better cache locality than when riu with
stop-and-copy.

Our work differs from previous work in two important ways. First. previous work used the
overall miss ratio as the performance metric. which is a misleading indicator of performance. The
overall miss ratio neglects the fact that read and write misses may have different costs. Also. the
overall miss ratio does not reflect the rates of reads and writes, which may substantiallY affect
performance. We use memory subsystem contribution to CPI as our performance nietric, which
accurately reflects the effect of the memory subsystem on program running time. Second. )revioiis
work did not model the entire memory subsystem: it concentrated solely on caches. .\lemory
subsystem features such as write buffers and page-mode writes interact with the costs of hits and
misses in the cache and should be simulated to give a correct picture of meniory subsystem behavior.
We simulate the entire memory subsystem.

Appel [4] estimated CPI for the SML/NJ system on a single lnachine using elapsed time and
instruction counts. His CPI differs substantially from ours. Apparently instructions were under-
counted in his measurements [5].

.Jouppi (27] studied the effect of cache write policies oil the performance of (C and Fortran
programs. Our class of programs is (lifferent fromn his. but his conclusions suipport onrs: that a
write-allocate policy with su bbock placeeent is a desirable architect tre featuIe. ie fotlid that the
write miss ratio for the programs he stuidied was comiparable to the read iiiss rat it). and that write-
allocate with subblock placement eliminated many of the write, misses. lbr progra11s coinpiled
with the SML/N.I compiler. this is even more important, dti(e to the high anuIIber of write( misses
caused by allocation.



4 Methodology

'We used trace driven simutlat ions to eva irate t lie irrerrror 'v sir hsvst eri perlorrita rice o' prl -r ills
compiled with the S NIL/ N.J corripiler. Fýor trace driveni sim iulat ions to be irsefri I. t here nirtist beC art
accurate simulation model and1( a good1 select ion of benich nrarks. Siniii iai hrions thIiat, in ake sinini ph fying

*assumptions about inmportanit aspects of thle sy* výtorn be ing itiodeled carlI vieid in islead i g res iii s. To' v
benchmarks. or' benchmrarks th at, are not represei I I ative of' I lie kii (Ids ofI task.- t Iiv ssvserin Is rrorrrrall 'V
used for, can be equallY niisleading. hrt I IrIs Nvork. inti uli effort. h Ias bveen devotedl to a dd ressilrg these

* issues.
Section 4.1 describes on r trace gerrerat ioi aiir(l stin ii Iation tools. Sect ioni 1.2 sta tes on r assir iiip-

tions and argues t hat they' are reasonable. Sect ion 1.3 describes anid chraracterizes tie benchrinar
programs used in this s1tiuly. Sect ion I. I dlesc ri bes lie riiet rics ii sedl io presenit rienroy sibs si e
p erforman ce.

4.1 Tools

We extended QPT (Quick Program Profiler and Tracer) [3:3. 9. 32] to produlce mieniorv traces for
SM1L/ NJ programs. Q PT rewrites air execiit able progra ii to pro(l ice corn 1ressedl t race Hirformiat ion:
Q PT also p~rodiuces a Iproglaill specific regerreirat ion jprogra in hla~t ex patilds t lie coMin tSSedl tIrace
into a full trace. Because QIPT operates on t hee e(ctirtablle jprogra ii. it can trace hot I tre S NILcod
and the garbage collect or (whinch is writt t irrin C), ThIe sign ifi (atitt trace coinp ressiori achieved by
QPT allowed irs to send traces to l'aster irrachiries where t hey couild be regeilierai ed anld simirilatedI
qulickly: about .50 /is to regerrerat e awil slirritilae each iirernorv referen1ce oi a iII 111 9000) inoclel 720)
machine.

Code produced b)'y the SMIL/N.J compiler presents three problemis for QP'V. First. S.\IL/N.J lpias
its c-ode in lie hea p. Since S NIL / NJ rises a copvilrig collector. code cartI he irroved Jii st lik 1w ata.
This creates numerous problemis; we solve t hem 1)y puitting SNIL/N.J code inI thle text seg-iteilt. so it
is never garbage collected. Second, progranms compiled Nvitlr the SNIL/N.J coinpiler have rio sYmibol
table information. SMIL/N.J makes the Iprolblem worse by interleaving (data, withI thle code. QP'I
needs a synmbol table to find all the code. Third. SML/N.I often implenirents fuinction calls rising
indirect jumps. QPT needs to know all the programn points that, corrld be targets of an inilirect
jump. We solved both prob~lemns b)y mtodify' ing SML/N.1 to lprodlrce tables that enable QlPT to
find all targets of indlirect jumps andl to separate code from da~ta: wve eirhanced QPT to uise this
information.

We used Tycho [24] for the memory siibsystem- simulations,. Tycho utses a. special case of all/-

associativity simulation [:341 tosimrnilate rnrrltiple caches conicurrentlyi . W~e exteddTcoiifo
important ways. First, we extendled Tychio to separate read misses fromt write mnisses. Second~. we
changed Tycho to simulate separate (lata and instruction caches simurltaneou~sly. Third. we added
a write buffer simulator to Tvchio. Thre write buiffer simulator can concurrent Iy sirnirilate a write

*buffer for each cache organization being simulated by' Tycho. The write buffer simulator also takes
page-mode writes andl mnteory* refreshes into consideration. FourthI. we added thle wrih oo (Il(orati-
write miss policy to T 'vcho.

We obtained alloca tion stat~istics bY iisin rign allocat~ioni profiler bum ilt i rito SN IL /N.J. 'The profiler'
instruments in termrediate code to kiicrenieri taplpropriate veleiren t of a rouiII (rra PYiJ orevery alIloca-
tion . We extendled t his p~rofiler to con rt t Ire rirrmber of assignirreri s done bY SNI L1/N.1 lprogranIisi.

4.2 Simplifications and Assumptions

We wanted to simulate the miemory' s ' steins as com pletely ats we coruhl. Flirts. we t riedl to ninii iriize
assurmptions Which mnight. red rice tIle va lidityv of on r dat a.. TVhis sect ion describes all thre itt port awn

'While doring cadife '111mgitaions %. %E W r(E IkE) otlrleIfii ,IdtdtiElionlt tdaia. 11(1 a., t;Irtkdý ý(tt)HfI lmE) 0 )IEi

W~'inchi A.oVVEt down~ Iit, 'iin it.1alEw)lI I, i



assumptions made iii this st iiY(I i d ll rIe. _ I1 1 ha III I

I1. .Simu latingJ 1iriN aflI(Mlt(I's.tibbhlik-4 phi, -m ol, wI ý//, or' r

cho dloes not simulate stlbIlock J)Iacteloiiit -a \ol.111) \ih

catelino subbkx'k and ignorinig thle read., 'rMil ,iii11M- ii'ran M,
cause asmall inaccuracy in thle (PI tiiitiinber,. I Iw ol \~t'

when the simplification' fails.

Let us suppose we have aI cache block siz( iif 2 wfirils II( rid
program issutes a write to the first woird. Hir-t her &"is11i Itiltat Ill v.

lplacemenlt. thle word will be \wI It t en to thle caclt a i(I i.'i
will be invalidlatedl. However, lhe -siipUlhifiedltl niidl W%1ll niw!k I' 2

write. If the program siilse(Itietit 'l% is."te." aI rad tl1' Ow '

regardled a~s a hit. [lhis thle ( P repmtirtell Iacmie \kit Ii,
than the ac tual (CPI. This is however a trel~ 0(11 *trrerice '1itit' "61 . '

assignments (see Sect ion 1 .31) an mtl iost wrilI 's are, hit -wfjIIentaI I' ; ii

2. Ignori'ng the efferts of ('onlit s nit-hh s (ind sqyst( ,n 'aI'm.it v\ I 'itth, '-- -1)

cauised by system calls) can affect cache protajc inifc i v.i \' '

it is an op~erating system issue I at affects all jprograins. tint .jus.t p ' a iiI i

intensive.

:3. Pessimistic sintU ulation of par'tial wcord Nlt.s ost Itierlim -'ii y~ t1 '1t ,11 1 -0

smallest adldrvssalble tinit andl also tinalitaii '',rrotr oiickti Iifrtii %, -,I,!
Thus, writes to partial words ( bv) 'es. half- words. I c. ) are tt( re ex)O' %it 0i 11.t 111 1I2
since the enclosing word needs to be read. mnodified . its error cliec ki- tI Ii i'iri Wa1 1i 11
written back. We charlge I I c-Ycles IfOr eýach pl-artial-word writ r'')I rAlh.. 'I 'A I ..
is in the cache. If the word is not ini (he cachie. thle cache bloc)(k is 11ut l4,1 11--d !!'in
Also, the write is hot quetied it p in tIhe write btiffer. lThis is inost1 lv I i~i' ~ i,

DECStation 5000/200 model of partial wordl writes: the ke~y differencel- I.t hat Iko I[ .t' i

assuming the worst case scenario (which is probably rare in lpractirt-I.

This inaccuracy, v however. does not have any, significant imlpact onl lie afiitr t 11w -:I
ulations: the CPI contribution of partial word1 writes is negligible even w\It It Oil, l'o- ii1-1

model (see Section 5).

4. The simulations are driven by r'Irtual addresses. The caches in mran ' ctr rrenrtiah ind w ti' a

physically indexed (notable exceptions are the SPAR( s andl llP seriies 70t) . 1ltis 'al 1 i

problem since the virtual address to physical address miapping can affect lie cmutlhicti Itt t~ie

cache. However some virtual to physical mapping schemes (e.g.. at variat ion (4l I-(iqf ( olm-71)i1
used in the MIPS operating svstem) yield similar intra-process cache conflicts ais if tIll', caciw
was virtually indexed [29]. Th~us. the simplification is reasonable.

.5. Placing code in the text sregient instead of the lioap. Tlis imiproves perfOrtItatice Ii''r Ill,'

tunmodified SiML/N.J sy' stem b)y redutcing garbage collection overheiad, since co(dev tNievi'r

copiedl. and lby avoiding instruction cache flushies after garbage collect ionis.

6. (['sed default compilation settings for SM/..Default compilation ;ettings etiable 'Xeiii
optimization. Evaluating the impact of these optimizations on cachie behavior is be otol lii'
scope of this paper.

.7. Vqed default f/arbagfJ collection x( tinqs

Wve iised the (lefauilt 51 rat egv for sizingtý lie allocat ion area and tie 1)1d1 qetieralmitl [le11
hevap is sized ais r ittinis lie size' (f tlie old getieration altevr lii' -)1d i-enterat iii 1,Oli'i'd

where r is thle desired ailo ()f lievip ,iueI( Ito- lkivIlta. r=5 was usevd I'M- all tiev prom'ir;IIui rttui,.
Thei allocation area is siWed a.s (delil I I li free spaice fI t( lvie ep sa Imlt llcIifhi'l biv Iti'



old genierationi). As5 I hie Old( gevjý ;I ira IIg-w ;loll v tc()- le e ch olloctI lollI of, I lIe w aIoc; Il ]oI area . I ho
free space decreaises aitidt ( lie al IlocaI iloll area (lecreases. T IIis coni mIleI s I IIt i I Ie ~III )d i!,weIIeratI lo Il
is collected.

We (lid not investigate t he interact ion of tlie( sizing st.rategy and ( cache size [191. tenl IeI(
allocation area is larger I hall di e caclil. it iniaY be poss5ible to iniiip n w p rogram n hna it ,v 1)w
(decreasing the size of' the allocation area So thIat it fItsl ill thev cache. hlowever. I his, \%.0jltd
probably incre-(ase g-arba;ge collec(tionI costs. Vil~dersI anioilg i liese t ra dolI'olS is byonold lhe "cope
of this paper.

In addlit~ion t~o tile ratio. t lie grarlbage collector is cotit rolleol 1) t lie 'tqflwo1( and t ie Inlitil/ /it op
sizt . rile sol~t inax Is a decsiredi tpper iintit oIl tile hiwai p/ve w~lichi ls exceeded m tlly t( iri-volit

prograins lroiii rmililng ow~ ofl space. H'ie softllldX was 20N\l t lie bench niark jpriu~riiil lever1l
reached this limit an~d were a~ble to alas e i/etir. lealps to ittailitaili lt I de(esitml ratio oh
5. Trhe initial le size was imN.

8. MIIPS aIs a prototypical I?ý 1S 'naci, ut . All tIlhe t races are Ior tI le I) IA Stat l ni 5000/200.
which uses a MIPS R3000 CPU. 'rthe results should carryv over to ot her ItIlS( maclines but.
we (10 not know how applicable the resuilt~s are- to ( lS( ilacltilies.

9. All iflstrucfjons lakc onu -crtch ith a 1xif ccl II(itu wv stibsqsi Iin. ()i t ie I) IA St~it ioll5t000/200.
this is not true for sonie instructions (such as miuIt ipl~.% et. Isf atIlle lilelliti u-v Iibsv
tern performanace is conicernted. 11ill1t -cycl inlst r'lict ionls c matg tllv t It' wri-it buiffer pemlaltie'<:
titulti-cvck' list 111(1 ionis can [r ivve Ill' writi' blIlFler iliNlt opportimit es h) let jiii Wits Sect io
5A.- shows t hat t~le w~rilt -bitvi He or uetItat 1., sit 11 tal Owii hi i1c iii ;c v tilt o)1col b\ ce I iii
assumption will be ntegligib~le.

10. A ssiuminq ( 'PV - I.Ycl( unit do( S iIoto i-qy with/I li mor orp1/ Il inutl .:ofil. I, lie ( P I cucl ll~linll,
assume that. th I(, CP1 cycle t minie remains I the saiiie l'Or dil lereiiilllenillorv or2,alliita jolts. Il~lis
may not be t lie case. sinlce t he C 1)~ U cy*%cle t nii (leIdepends onl Ihe cache acce.(ss t minle. \%.liicll1 it iav
be different for different cache organizations. For exam ple, aI 1281K cachev may take longer to
access than an 8K( cache.

4.3 Benchmarks

Table I (lescribes the benchmark progranis-. Kmtth-Ikndix. Lcxgcit. Lift'. Slinupic. VLIIV. and
1•4CC are identical to) the benichmiarks tiieastireol by A ppel [41". Tab.1le 2 gives t ie sizes of' thle
benchmarks in terms of lintes of S NILI code ( exclud(1ing *oiti il(Iei t~s anud blanIik lintes). iiiaxintliii liea l)
size in kilobytes, size of the compiled code iii kilobytes W oes hot include t lie garbage collector andl
other run-time support code which is about, (601K). anid run time. mu se'conids. onl at DE( Station
5000/200. The run times are the minimum of five runs (see Sect~ion 5.6).

*Table 3 characterizes the benchmark programs according to tHie mnumber and kinds of' miemory
references they do. All numbers are reported as a Jpercehtitage of inst~ruct ions. 'rthe IRuuds. lvritcs.
and Partial ivrites col im ns list. thle reads, full- wordl wvrites. and1( part iaI- wordl wvrites (lone( bY thle
program and the garbage collector; thle assu/in(lhlilts cot ili iin lists t lie nlon -in iiializinug w uilt s donle
by the program only. Trhe *vops ('0111in in lists the le 101) exec iit~ed bY thle p)rogra iii antd 1 lie ga rlage
collector. Note that, all tH ie bench miarks have long t races. miost re~laIedl works its (, tiraces tha Iiat a i
an order of magnitutde snialler. Also, niote that. tI le benchnmark progia titsd 1(0\ve assign ilient 5: lie
majority of the writes are initializing writes.

"Available from the authors.

"The description of t hese benc-tin uarks utitvv lwvii copied troin [11.

7,1t11( coeSiZe ntu. 2171K tor Ito- tIantthrdt tibrairws.



Program [ Description

CW The Concurrency Workbench [15] is a tool for analyzing networks.
of finite state processes expressed in Milners ('alcihlus of ( otninnul-
cating Systems. The iniput is ilie sampie session froin Section 7.5 of'
[151.

Knuth-Bendix An implementation of the Kutith-Bendix conpiet ion aigorithii i. ill[-
_plemented by GerardI ,lue,. iprocessing sonie axionis of geometrv.

Lexgen A lexical-analyzer generator. ininlplieenl ed IY .1amies S. NIat•tson and 1
David R. Tarditi [7]. processing fihe lexical description o)f Standardl

Life The game of Life, written by C'hris Reade [40). running 50 generations

of a glider gun. It is illpletnented 1using lists.
PIA The Perspective Inversion .\loorit hi [AI7] decides I he lo~cat ion of a n

object ift a perspec.ive video image.
Simple A spherical fluid-dynamics program. developed as a "realist.ic" FOR-

TRAN henchmark [16]. translated into 1I) [21]. anid Oicn 1raiislated
into Standard NIl. by l.i ( ,orge.

VLIW A Very-Long-Instruction-Word instruction scheduler w'il tn bYv .Jh oin
I-)anski n

YACC .\ LA LR 1) parser g;enerator. iml)lenieted by Davi It . T"ardili[t 111.,
processing the granimar of Standard NIL.

Table 1: Benchmark Programs

Size Run time
Program Lines I Heap size (K) I 'ode size (K) Non-gc (sec) (;C (sec)
CW 5728 1107 894 22.7.1 3,09
Ksnuth-Bendix 191 2768 251 13.-17 1.ý1I

Lexgen 1224 2162 305 15.107 1.06

Life IIt 1026 221 16.97 0. 19

PIA 1454 10125 29I 6.o.7 (.)Al

Simple 999 11571 31l1 25.58 1.231

VLIW 3207 I0)9 486 23.70 1.91
YACC 5751 1632 580 4.6(1 1.98

"Table 2: Sizes of Benchmark Programs

I1)



Program [nst Fetches Reads (%) Writes (%) Partial Writes (¶{ I1 Assignments ('A) Nops (V

CW 523.2,15.987 17.61 11.61 0. 0 0.111 13.2.1

Knuth- Bendix 312,086,438 19.66 22.31 0.(t)0 0.00 5.92
Lexgen 328,422.283 16.08 10.,111 0.20 0.21 12.33

Life 413.536.662 12.18 9.26 0.000 ()0.0 15.15

PIA 122,215,151 25.27 16.50 0 (1 0.0 0.0 8.39

Simple 604.611.016 23.86 111.06 0.0(1 0.05 7.58
VLIW 399.812,033 17.89 15.99 0.10i 0.77 9.04

YACC 133.043.324 18.,19 II.66 0.32 0.38 11.1.1

Table 3: (Characteristics of' bench mark p)rogramIs

Allocation Escaping Knowni ('allee Saved Records Of her
Program (words) % Size %7' Size % I Size Siize % ze

CW 56.46T.440 4.0 1.12 .3 15.3 6.i 2 7 6.20 19. 5 3.01 6.0) 1.00

Knuth-Bendix 67.733,9:30 37.6 6.60 0.1 1 5 .2 2  49.5 4.90 12.7 1.00 0.1 15.05
Lexgen 33.046,349 :3.A 6.20 5.,4 12.96 72.7 6.410 15.1 .I3.00 3.7 6..97

Life 37,840,681 ((.2 3.45 0(.0) 15.00 77.8 5.52 22.2 3.00 t.0 1D.L29
PTA 18,841.256 0.A 5.56 28.0 I 1.99 25.0 .1.69 12.7 3.241 33.9 1.22

Simple 1140.761.6,14 1.1 5.7(1 I.1 I. 1. 68.1 6.43 8.3 t 1.00 18.5 :;.I1
VLIV 5.19,7.13_2 ).9 5.22 6.0 26.62 6 1.8 7.67 20.. 1.01 2.1 2.(i((

YACC 17.015.250 2.3 41.83 15.3 15.35 1.t 8 7. 1, 23.7 1.t( 1.() 10.22

Table 1: Allocation characteristics of benchmark programs

Table 4 gives the allocation statistics for each benchmark program. All allocation and sizes are
reported in words. The Allocation column lists the total allocation (lone by the b)enchmark. The
remaining columns break down the allocation by kind: closures for escaping functions, closures for
known functions, closures for callee-save continuationss, records, and others (includes spill records.
arrays, strings, vectors, ref cells. store list records, and floating point numbers). For each allocation
kind, the % column gives the total words allocated for objects of that kind as a percentage of total
allocation and the Size column gives the average size in words, including the I word tag, of an
object of that kind.

4.4 Metrics

Following the lead of recent work on memory subsystem performance. we state cache performance
numbers in cycles per useful instruction ( ('P). All instructions besides nops are considered useful.
Unlike miss ratios. CPT numbers give an indication of how fast a program will run. On the (lown
side. CPI numbers are machine dependent because actual penalties are use(d in their calculations.

Table 5 lists the penalties used in our simulations. These numl)ers are derived from the penalties
for the DECStation 5000/200, but are similar to those in other machines of the same class. Writes
have different penalties depending on whether or not subblock placement is being used, the block
size (and thus the fetch size), and whether the writes hit or miss in the cache. For caches with
subblock placement. write hits or misses have no penalty (besides write buffer related costs)". For

",Closures for ralhee-save continuations can be trivially allocated on a stack in tihe absence of first class

continmiatto ons.

"I•I1 an actual implemlt latlionI. Iie penalfy ofl a 1li's ilaY hbe one yc le sinl' inlike hilts, (e I ;•g iieds to 1w wrilt tn

II



Task Penalty (in cycles)

Non-page-mode write 5
Page-mode write I
Page-mode flush 4
Read Wi bytes from memory 15
Read 32 bytes from memory 19
Refresh period 195
Refresh time
Write hit or miss (subblocks) 0
Write hit (16 bytes, no subblocks) 0
Write hit (32 bytes. no subblocks) 0
Write miss (16 bytes. no subblocks) 15
Write miss (32 bytes, no subblocks) 19

Table 5: Penalties of memory operations

caches without subblock placement, write Iits have no penalty (besides write buffer related costs)
but write misses cost 15 or 19 cycles (plus write buffer penalties) for block sizes of 16 and 32 1)Vtes
respectively. The read miss and instruction fetch miss penalty depends on the block size: it is 15
cycles for a block size of 16 bytes and 19 cycles for a block size of 32 bytes.

We used a DRAM page size of 4K in the simulation of page-mode writes. Page-mode flush is
the number of cycles needed to flush the write pipeline after a series of page-mode writes.

TLB data is reported as (CPI - CPI of perfect memory subsysteml°). This is the TLB contri-
bution to the CPI. This metric is used instead of just CPI to allow us to present the measurements
for all the benchmarks in one chart. A virtual memory page size of 4K was used in the simulations.
The penalty of a TLB miss is 28 cycles".

5 Results and Analysis

In Section 5.1 we present a qualitative analysis of the memory behavior of programs compiled with
SML/NJ. In Section 5.2 we list the cache and TLB configurations simulated and explain why they
were selected. In Sections 5.3, 5.4, and 5.5 we present data for memory subsystem performance.
write buffer performance, and TLB performance. In Section 5.6 we validate the simulations. In
Section 5.7 we present an analytical model which allows us to extend the memory subsystem
performance results to programs with different allocation behavior. In Section 5.8 we summarize
the results.

to the cache after the miss is detected. This will not change our results since it adds at most 0.02-0.0)5 to the CPI
of caches with subblock placement.

`0 The CP[ of a perfect memory subsystem is the total number of instructions divided by the number of useful
instructions.

"This is a weighted average of the various kinds of TLB misses under Mach 3.0 and is derived from the data in
[46].
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Write Policy Write Miss Policy St)iblo,'ks I \ssoe Block Size I ('ache Sizes \\rite l3iitfer

through allocate PIS 1, 2 16. :2 1 vi., SK-5121K 1 -6 deep

through allocate no 1, 2 16. T32 bytes 8K--512K 6( deep
through no allocate no 1 2 16. 12 bytes SK-5121K 6 deep

Table 6: (aclhe organiza tions stird(Iied

5.1 Qualitative Analysis

Recall from Section 2 that SiNIL/N.J uses a copyinrig collector. "I' he liost i niiporlant )property of a
copying collector with respect to lrrelnor" sil)sVstIil b•Iliavior is liat allocat ion initinalizes rrrrrorv
in an area that has not been touched since tHie last garbl)age collect ion. Tiis u•ea us lhial kwr (acdies
that are not large enough to contatin the allocation area lhere will be a large inumber of write misses.
The slowdown that the write misses translates into depend on the memory suibsyst.emn organization.

Recall from Section 4.3 that SML/N.J programs have the following important properties. First.
they do few assignments: the majority of the writes are initializing writes. Second. programs d(1
heap allocation at a furious rate: 0.1 to 0.22 words per instruction. Third. writes corie in bmhiclies
because they correspond to initialization of a newly allocated area.

The burstiness of writes combined withI the propertYv of copYing collectors tnienliorrod aboy,,
suggests that an aggressive write policy is necossarv. It l)parti(cular. wriles -dhiild not •t4all ht,,
CPU. Memory suibsvsteiii organizatioirs where tIe (CP1" hais to wait fi• a write, lt)o , writlterll
through (or back) to memory will perform poorly. Evert 1rienrory silbsys',tenis \vwhere thre (' 1" doe'.
not need to wait for writes if they are issued far apart (e.g.. 2 cycles apart in lie UIP 9000 series
700) may perform poorly due to tHie birrncl'iig of writes. [Iris lea(ds to t1I") reqI mirorii rt re
memory subsystem. First. a write buffer or fast page riode writes are es..e lial to avoid waiting
for writes to memory. Second. on a write miss. the rmermory sitbsystemr nmist avoid rea(ling a ('ache
block from memory if it is going to be written before being read. Of course. Iris re(luiremernt
only holds for caches with a write-allocate policy. Subblock placement [30]. a block size of t word.
and the ALLOCATE instruction [38] can all achieve this. Since the effects on cache performance
of these features are so similar, we talk just about subblock placement. For large caches. when
the allocation area fits in the cache and thus there are few write misses, the benefit of slibblock
placement will be reduced.

5.2 Cache and TLB configurations simulated

The design space for memory subsystems is enormous. There are many variables involved and the
dependencies between them are complex. Therefore we could study only a subset of the memory
subsystem design space. In this study, we restrict ourselves to feattires found in currently popular
RISC workstations. Exploration of more exotic memory strbsystenr features is left to fituire work
(see Section 6). Table 6 summarizes the cache organizations simulated. Table 7 lists lhe uremnory
subsystem organization of some popular machines.

We simulated only separate instruction and data caches (i.c.. no unified cac'hes). While many
current machines have separate caches (e.g., DECStations, lIP 700 series), there are some excel)tions
(notably SPARCStations).

We simulated cache sizes of 8K to 512K. This range includes the primary caclies of most current
machines (see Table 7). We consider only one-way (direct mapped) and two-way set associative
caches (with LRU replacement).

We simulated block sizes of 16 bytes and :32 bytes. Moreover. fetcli size is kept lie sante as the
block size: in particlIar. in caches withi sil)bbloc(k j)lacuinent. a. read miss brings in I lie wihole block.
not just tHie sulbblock (:asilig tlhe iniss. It elect . thirk is prefl('tclii•g. IPrzvblvlski [39] nIes I liar
making the fetch size eq ial to hlie block size is a good (choice, wilti r'esl'p t Ih) e1,•iri r Il bsY't erii,

I 3



lArchitecture J\Vrite Policy JW'rite NIs., Policy j\riileu Btifer~u htsibocksj ssoc! 1114)4k S1/f'( (14'/

DS3100 [19] th rouigh allocate I dee(p _____ I I h It-, 6 1Ik

SPACA atonII 17atrogh o llca1 I[171 throught no litl\S500200[1] thouc aloat didep deeph [M IiP 000[4]tac aloctenoI ioto____k

Note:

e SPARCStations have uinifiedv.aches.

* Most HP 9000 series 70(1caches are nitch slinaller Ii han 2MN: 1 28KI illi ii I 1 411, IM - i A tii l 2 .4.K \ ILoa a . -i f, Ili. I' I 721

and 730, and 256 K inlstrulction i-ache andI 256K dlat "a.-hle fo r 111444 I 77i.

* The DS.5000/200 actually hias a Worilk size. ýf fm.ir 1) ves, wit h a;ftc (diii "t I Xt (eei t Ie Ill.~ 1, 1 1 ,',4~et I hallui~i,.
placement since it has a fill[ tag oil every'%I)I1 4

* The higher end HP 9000 machines (mo4del 735 Andl Ali4Ve) loidiea'I I all- .. o Illf41 Iliiit ii ll i t I 11 . I*4 '1. ~ lýil. 1" 1 ' I''

The hint can specify that a block will tbe o verwrTitten befo re b einiig read; I Iiii avoid I11' he1 read if. IT f1 t %% ri ISi 1wI

SML/N.J compiler may be able to extract much of thle b~enefits ..f stiblociik placemnjet fromnt Ili% fi-at ure.

Table 7: Memiory subsystem organ iza tion of some pop idar inachines

performance. Przvb 'vlski also notes that block sizes (If 16 or :12 1)V t v('s opjtimize/3 I liv ' a i''ill a
time for the memory: pa ramieters iise'd in t Ilie (Pt) c-a tl-itat ions~ 1 '44laili I o-- . I Ir a lIor. wýIld))14\ 11

subblock placeminin is invi(iiitioledl it is ass~iil4tl 1 hat I liv ' lt Ii si/I 'l t1 IiW vq iis k k '1/0.
We report data ottlY (*r write-Hi rough caclivs~ bilt tliv CPI l*0 write4-back 1;ichil' (-;llb ii Fm l-o

from the graphs for write- t hrough caches. W\hile write-I irotigli andi write-hack cacli('s hlay' Ident ical
misses. their contribution to the CP1 mlay (jilter1 (1i)' It) t wo rvasiolts. Fir st. aI writ' lilt mllnt1s Iii
a write-back cache mnay take one cycle iliore' I han inl a writ e-tlirouility ca~che: ii t1ilke a wri-it- I 1 tough
cache, a write-back cache mnust probe' the tag lxfoiY writing tol H.it' ('dcli) [27]1. H is' g-raii fill.
write-through caches call le easily adjusted to accounlt for this to obtain thle graphls IlOr writ'- back
caches. For instance, if the program has w, writes and n useful instructions, then thie (.P1 for a
write-back cache can be obtained by adding iv/n to the ('1P1 of the write- I Itrtigli cache with Ii te
same size and configuration. For VLIW tv/n is 0. 18. Second. wvrite- t h rotigh and( write- hack caiclivs
may have different write buffer penalties because the 'y (10 writes to main memorY with ditifferenti
frequencies and at different points. We expect, the write buffer p~enalties for write-back caches to
be smaller than those for write-through caches since writes to main miemor 'y are' less frepiveilt for
write-hack caches than for write- thlrough caches. This difference between writ('-tliroutgli and write-
back caches is likely to be negligible since the write-bttlfer penalty is sniall even for' write-I lrotigh
caches.

We varied write buffer depths from I to 6 entries for write- throtigh c'ache(s with thie wri'li-
allocate/subblock placement organization. We also simuilat~ed memory subsystems wit Ii and wit hoiit
page-mode writes.

We simulated fuilly associative, unified TLI~s from I to 6.1 entries with LRI T replacement p~olicy.
Some machines (scich as the l1P 9000 series) have separate instruction and data lI'Lhls. Front
Section 5.5 it is clear that for the benchmarks e'veni small tiuiified T17,1s p~erformi well.

Two of the most implortanit cache parameicters are wivijc allw-ate versus ttritt tir (illoc(Ill( antd silb-
block placement versuis no subblock placr went. Of Iliese. I lie combination wrifrtco (t1W(llld'Knhsubblock-
placement placement offer no iniprovemient, over wr?h no alkx'atc/no subblockA plarcimnct for cache'
performance. Thus. we dlid not. collect dlata, for the irriter no allocate/subblock placcinirit configutra-
t ion.

We restrict omtrselves only to the first two levels ofthle' memory hiiera-rchy, -which onl most curirent
machines correspond (s to thie primia rvy cac lie antdl inai Ii uinemtor'y. The restidIs. Ilowe~vvir. ate tutost lY
applicable whe'n tIlie secoind Ilvelv is aI secmnidu rv cache' antd I lie cost of accessing tlie' secotida rY taie'Ii



is similar to the cost of accessing main mentor'y iii the D) C( Sta ion 500)0/2(0)'-', fin :ricli machinets.

there is a memory sn bsvsteni cont ribu11t ion to th le (Tj)I that we d id not nieas lire: aI mniss onl I liv secorid(
level cache. Therefore the C'PI obtained onl these miachiines call he htigher t haln that reportedhr.

W~e did not simulate the exotic feattires appearing onl somie niewer niachinles, suich as striealni
buffers, prefetching, score board ing. and( vict imi caches. These features cani red ice il( heni iiiber of'
cache misses and miss costs. Fuirt her work is nteedle( to ii nderst and ilhe uimpact of thoise fea fires (iii
the performance of heap allocation.

5.3 Memory Subsystem Performance

WVe present memory srllbsvsteni pel)'Olrllianc(' In siltuitnary graphs mid~ lbreolkdowlr _raphslr. Lacli
summary graph summarizes t.he neiniory sit bsystemi perfornianlce ofli one benchna rk prograril for aI
range of cache sizes (8K~ to 512K). write-'miss p~olicies (write allocate or wrire nio allocateý. ,iibbllock
placement (with or without ). and associat ivit y ( I or 2). E~achi CI'Vit l r ;e ii riiirra ra pin corres -( rtii

to a differenit memiory sublsystemU organization. There are two sitmrnarv grajphs for- each iprograini.
one for a block size of 16 bytes and another for a block size of' :12 bytes. E'ach b~reakdlown graph
breaks down the memory subsystem overhead into readl misses. write rrisses (if there is a penalt '
for wvrite misses). instruction fetch misses. write-biiffer overheadi. anti pairtial-wo)rd write overheadl
for one configuration iii a summary graph. The writ e- bufifer dleptht ill thiese .,rapliis is fixedi at 6j

entrik-s.
III this section we present only the sOw mlT~inar ,' griaphs for VLIW ( Fiq ir re( 2). ['lie mr irr itia r-v gra 1 hs

for oithter progranms are-( stiriilarI a ndt; ( are givenl iii Appeuid ix A.\ Fig 1rose 3. I. a rid 1 -7r' a r-,1ite btea kdo writ

garaphs for VLIW for lie 16 Iiyte block siz.e corifigrirat otis: tille r('rrilitlirI(_ irrrakd()wir _rap. I'm-
VLIWare similar ano omjt ted for coriciseliess. 'I'lhe brea kdow ii gra phis for tle oitIi r b' ii chiii ark~s are
similar ( andI predlict able fromt thle stumrmary graphs) and are t hitis otnfit t l for t lie sa tue reasonl3

III the surnmrarY graphs. thle mwPs crurve is the( base ( 'P1: tire total nit ttilwr o f Iilisrrurciiotts
exectutedl divided by thle intumber of useful ( not 11o1)) inst ruictions execri t('(: thiis corresponlds to
the ('P1 for a perfect miemory subsystem . For thle breakdown graphs. thie nop area is thle ('Pt
contribution of nops: read mliss is the ('P1 contribution of readl misses: writh mixss is tie ('PI
contribution of write misses (if any). inst fetch mniss is the ('P1 contributioni of instruction fetch
misses: write buffer is the ('P1 contribtution of thle write btiffer: partial wrord is lie (T'II corntribuition
of partial-word writes.

Trhe 64K point on the wtrite alloc. subbhxyk. ass~or= I curves correspond~s closely to thle l)E( Sta-
tion 5000/200 memory subsystem.

In the following subsections we describe the impact. of write- muss f)ohicY andl stibblock p~lacemrenet.
associativity. block size, cache size, write briffer. and~ partial-word writes oitl I t l wierenor~y sit )svsternr
performance of the benchmark programns.

5.3.1 Write Miss Policy and Subblock Placement

From the summary graphs. it is clear that the best cache organizatiotn we studied is writ! alin-
cate/subbloek placement: it stilstantiallv ouit lfrformis all ot her configurat ions. SuiriprisiiuglY. for
sufficiently large (caches with the writi (Illocatel/srbbiock p/ac! wncrt orgamtiza~tion,. the memtor'y sri-
system performance of S NIL! N.J programs is accept able: tHie overhead d(tie to data cache misses
ranges from 3:14 to 13V/ ( an thi met ic mteani 9/ ) for il K dIirect in a ped cachlesi- a ird I to IT3/"
(arithmetic mean 9(Y() for 32K two- way associative caches. Thte memory sn bssvsteir perforranace rof'

"2 For instance, Borg et al. [101i)Jrse 12 cYrles ;is the latency for going to the second level cache and1( 2001-2501 cYcles

for going to memory.

"'T'he full set of graphs is availabile via aifol~vinlols fitp frorot ihjis.rs~uyrass.tdrr itt~l!u(uoY~r)yt'

16roopi constitite lbftwevi'l ,nd" o1( ' f dl inst rmlitoli *-xv'Iitii 10r I Ii' bvh maIrr rk" i '-q '',ucnrfl 1t I)

Rlecall that rhis iuorrej(mdiiui, t~ Ih 1w)OF( "itit ~iotttrttrrri', -oi~/ii tfm Ilbsv'1tiiii.



SML/ NJ programs onl th lip IA :St at tion 5000/200) is comiparable tot It atI of'( ;Il 1(I FortI ran pi rogra I I,,
[12], Chien and Bershad find t hat H ie (IalIa cachie ()verheadl of'( antd Fortria it p rogram ii afiiivs lirott
less than 1%Y to 66"X%. with a ii arithmet ic iiiEd i i ol',;4 '". It is wort Ii emtphiasizinug that t lie iieiiiorv'
subsystem performance of' S NIL/.N.J iprograniti is yood()Ito soiie' ciiirrent iiiacltinies // *pI( rlu P(

high miss rates: for a 6i4K tvrith (Lli(NatI/Iuit). bblock place inu-nt orgainization wiii\V i a bloc k size oIf 16
bytes. the write miss atid read iniiss ratios tf(r VLIW are( 0.23 and 0.0)2 respect ivelv..

Recall that in Section 5. 1 wveargued t hat H ie beie!jil oi* sitl)l)loc-k placetmentI would1( be "ti b~li an;al.
but that the benefit would diecrease for larger cachies. The suminar 'y grap~hs Ind~icat e t hat thle
reduction in benefit is not substantial even f'or 128Kl cache sizes: however. thle benefit of' suiblblock
placement decreases sharplY f~or larger ca~ches f'or six of* the benchmark programns. [Elis iiggests
that the allocation area size of' six of ihe beuchmniark programis is 256iK to 512K.

The performance of irrih ailocalf /ito .,oibbiw-k is almiost idlentical to thiat of turiht tio/locotit /ti
.subblork (Leroy is anl excep~t ionl ) 7. Thisk suggeI"sts I hiat an aIdd ress is being" read ~o ii after heilii
written: even in anl 8K cache, anl add ress is readl af'ter beinig writ Ien bek4re It P, evicted 'o on t lie
cache (if it was evictedl front t.he cache before beitig readl. t hen wrift ailloca /nio .,iibb1lx-A woulId
have inferior performance). Tlhe otnly dlifferenice between these two schemes is w/hiit a cache block
is read from memory. Ini oiie case, it is lhromdgit inl on a write miss: inl the other, it is brougtil
on a read miss. Because SM 1./N.J programns allocate sequientiall 'y and do few assgii~tlien ts. a iiewlv
allocated object remains il tilie cache iint il thle programi has aillocatled anothier C bytes. where C sl.

the size of the cache. Since the programis allocate 0.41 -0.9) bytes per inst rictiout. ourl results suiggest
that a read of a block occuirs wit hin 9K 20K i ust rict ioiis of* its beinmg writ tenm.

5.3.2 Changing Associativity

From Figure 2 we see that increasing associa~tivity, implroves all organiizatiotns. However Ilie imliprove-
nient in going from one- way to t)two-wav set associa i vi; v is, tit1c ucl uialler t hal iil( tleil provemeuil
obtained from sitbblock p~lacetmenit: in most cases. it iminproves tHie (T 1) * by less t hani 0. 1. T he
maximum benefit fromt higher associativit v is ob~tainedl for smiall ca-che sizes (less t hain I6K). llowv-
ever, increasing associativity umav increase (TV I cYcle t inie ;ind thbus t he iminprovemnent s iiiaY not. be
realized in practice [25].

From Figures 3. 4, and 5 we see thtat higher associativity imiproves lite inistruict ion cachie p~er-
formance but has little or ito impact on dlata cache p~erformance. Sttrprisingly. for (direct iiialpled
caches (Figures :3 (a), -4 (a), and 5 (a)) the instruction cache penalty is substantial for 128K or
smaller caches. For caches with subblock placement. the instruction cache penalty can (dominate
the penalty for the memory subsystem. The improvement observed in going to a two-way: associa-
tive cache suggests that a lot, of the penalty from the itnstruction cache is (lite to conflict misses
and that from the data cache is due to capacity misses: thme diata cache is simply not big enough
to hold the working set. When the benchmark programs are examined, the performatnce of the
instruction cache is not surprising: the code consists of small functions with frequent calls. which
lowers the spatial locality. Thus, the chances of conflicts are greater than if the instructions had
strong spatial locality.

5.3.3 Changing Block Size

From Figure 2 we see that increasing block size fromt 16 to :32 by' tes also improves performance.
For the write allocate orgatnizations. an increased block size dlecreases the number of write mnisses
caused by allocation. When the allocation area (foes not fit in the cache. (doubling the block size canl
halve the write-miss rate. -rims. larger block sizes Improve p~erformance when there is a. penalty

'itCben andh Bersliad itse ( vetes! Instruct ion rat her t han ( vceisffIseftil I nstruiction which towers their trieuuuorv
suibsystemi overhead.

17'r he d ifference betIweeni iuv, ~t( dIo<at /rif sit 6 , 1 (xs ,nt ii,vii it, ~I I)('at f I/11(1 i I ~,h if Yk is o( sii~t II it tiosi a rap Is

that the two curves overtap).



for a write miss [30]. In particular. larger block sizes have little to offer to caches with iv,'itf
allocate/siubblock plac( mt tt. From Figure 2 we see that the irite no a(llMx',t organizations benefit
just as much from larger block size as write allocate/nto subblock placucnent: this suggests that the
spatial locality of the reads is comparable to that of the writes.

Note that subblock placement improves performance more than even two-way associativity and
32 byte blocks combined.

5.3.4 Changing Cache Size

Three distinct regions of performance can be identified for cache sizes. The first region corresponds
to the range of cache sizes when the allocation area does not fit in the cache (i.e.. allocation
happens in an area of memory which is not cache resident). For most of the benchmarks, this
region corresponds to cache sizes of less than 256K (for Simple and Knuth-Bendix Ihis region
extends beyond 512K). In this region. increasing the cache size uniformly improves perfor~mance
for all configurations. However. the performance improvement from (loubling the cache size is small.

From the breakdown graphs we see that in the first region the cache size has little effect on the
data cache miss contribution to C(P. Most of the improvement in CPI that comes from increasing
the cache size is due to improved performance of the instruction (cache. As with associativity. cache
sizes have interactions with the cycle time of the CPU: larger caches can take longer to access.
Thus, improvement (lie to increasing the cache size may not be achieved in practice.

The second region ranges from when the allocation area, begins to fit in the cache ,ntil the
allocation area fits in the cache. For most of the benchmarks (once again excepting Simple and
Knuth-Bendix), this region corresponds to cache sizes in the range 256K to 312K Is. In t his reion.
increasing the cache size sharpiv improves the data cache performance for memory organizations
without subblock placement. However. increasing the cache size in this region has little to offer
for instruction cache performance because the instriction cache miss penaltYv is already low at ?hi.
point.

The third region corresponds to cache sizes when the allocation area fits in tlie cache. For five
of the benchmarks, this region corresponds to caches larger than 512K (for Lexgen. Knuth-Bendix.
and Simple this region starts at larger cache sizes). In this range, increasing the cache size has
little or no impact on memory subsystem performance because everything remains cache resident
and thus there are no capacity misses to eliminate.

5.3.5 Write Buffer and Partial-Word Write Overheads

From the breakdown graphs we see that the write buffer and partial word write contribution to the
CPI is negligible. A six deep write buffer coupled with page-mode writes is sufficient to absorb the
bursty writes. As expected, memory subsystem features which reduce the number of misses (such
as higher associativity and larger cache sizes) also reduce the write buffer overhead.

'SFor Lexgen this region extends a little b)eyond 512K.

17
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5.4 Write-buffer depth

In Section 5.3.5 we showed that a six-(leel write bI~iller (ohilellv wit i papge-1rnnl' writes wa., abl 1()
absorb the burst :v writes in M 17.Jprogra ins. Ini this sect ion wev explore thie uipiJact of wr iv I lii Ifr
depth on the write-buffer contribiution to C P1. Since t lie speed at whiic II thle write blriIer can ivi ret li
writes depends on whet her or not. t he niternor ' surbs yst em hias page-inode writ es. we conmid i (1%el o
sets of experiments. Iii the first set.. we sinmit fated a nienorv si] ). v~stveri wit))i paie- tiodvl( writes anid
varied the write-buffer dept h from I to 6. Iii t Ieo secondi.lset . we 'iliiiilat ('I iiie livi'l ýry 1iihVdflti
without page-mode writes andl variedl th~e wr lte- 1) frer (lept I[ fronti I to 6. W (oili c i ''d tco I Ii-, 'trild 'v
for two of the larger benchmarks: CW antd VLIW. We fixed lie block size at I 6 bvr es miid t lie write'
miss policy at rtcrfl (llw-at(/sitbhhok plac( /ti uW.

Figure 6 gives the write buffer overhevads for VLIW wit It (liclies, ol associait lvii V 0111' and two anld
in a memory subsystemi wit Ii page-iiode writ es: F"i"ri re 7, do"', tie satin' III ;I iiieiiio0rV ~ih'-
without page- mode writes. [lie grapi p)15Jlot t lie, ('P cotlitribll tionl ofI' ilie write 1)11 t'er ;-a ii ii t
cache size: there is one cuirve for each wrnte-buim tor lepilt i. ( rap1)11 for CW are onunt t elol h r pa1
considerations. Increasing t lie cachie size or a ssoc ia t i vlI t red ii u's the niri er of reýad andi (I iii ri ct j(

fetch misses, and thus redluces thie number of mnain memory transactions. This reduces thle write-
buffer contribution to the (P1 in louir way,,:

1. The write buffer has more cycles to ret ire its ertit riels and hietce tIme, irrd bitflff r fudll-ahs
occur less frequently'9

2. In the memory subsvs ('in wit Ii pawe-itiodiv ri s til' iiiiilli Iniii(iior s t Ilirow i il' (IIIdp;
inodle less frequently. allowing rlte write hi bi' *r lo I''~ii- %re tv es icklv-' *11 " 1 ii I i I.
write buffer frull stalls.

:3. Since there are fewer reads to mnain iin'inor v. t lie rmiitihr of t ileso aI read to ritaiii Irlii'irorY
needs to wait for a write to fi nish is less. t h ius redu rcing r hie 11(inaii itftiory busyj lelays.

4. Since there are fewer reads to miain itreior 'v. a read to miain miemory coniflicts kvlt i ai xrite
buffer entry less frequently, thus reducing the wtrite buffer conflict delays.

In memor *y sribsv* stems with page-mode writes ( Figure 6). t lie (differenice betwveetI Ithe ('P1 ('(oml-
tribution of a one-(leep write buffer arid a six-(leel) write buiffer is less than 0.05. T[his is surprisinglY
small considering tile burstiness of the writes. This is (file to thre effectiveness of page-iiiode wxrites:
an example illustrates thlis:

Suppose that a SMIL/N.J program is allocating (and initializing) an object whlichr is -1 wordls
in size and that the write buffer is one (leep. Further suppose that the write buffer is enli;)t'v and~
that the instructions doing the allocation all hit in the instruction cache. The first write (does not
stall the CPU since the write buffer is empty. The next-write comes one cycle later. finds a frill
write buffer, and thus stalls the CPU. After 4 cycles (see penalties in Table ).the write is queuted
up in the write buffer. This write, however is highly likely, to be on the same DRAM page as t le
previous write (since it is to the next address) a~nd will therefore take only one cYcle to complete.
All subsequent writes to initialize this object find an emnptY write btuffer since they all comnpl) Ietein
one cycle due to page-nlodl writes.

As notedI above, all t lie writes t~o initialize an objcfr)ieyt eo th arepg i a

thus take advantage of' page-miode writes. Dire to sequrential allocation, it is likely, t liar writes to
initialize objects allocated one after another will also be oni the same DRAM page. Flirts. tii tlie(
best case (with no read misses and refreshes), at writc buffer full (elay' will happen only ouit(( er
N words of allocation, where N is the size of the I)RAMI page. Thus. the write buffer depthi has
little performance impact on SM,/L/N.1 programs if tHie memnory su hsystemi has page- iiodle writ es.

"' Recall that. a wriie I)Iit'(r uses free memiory (ct('cs iio r('ire its \vrites,.

" Re,-all t hat, readIs iiirow mauin nictnuorv out11 of i)avf miod(-'.



To confirm this explanation. we measiired tile l)roba hilit ' of two consectilivo writes being oiit i1,e
same DRAM page. This probability (averaged over the henchiniarksi was 96X.

The small impact of write buiffer depth on performance does not iniply that a write biiffer is
useless if the memory systeim has page-mode writes. Instead. it says that a write buffer offers little
performance improvement in a mieniory subsystem with page-niode writes if tle progranis have
strong spatial locality in the writes. and the majority of the roads and instriction fetches hit in
the cache. Strong spatial locality means that the probability that two consecutive writes are to the
same DRAM page is very high.

Write-buffer depth is however important if the memory subsysteil does not have page-niode
writes (Figure 7). A six-deep write buffer performs substantially better thian a one-dlep writ,
buffer in a memory system without page-mode writes.

5.5 TLB Performance

Figure 8 gives the TLB miss contribution to the ('PI for earch I)eiichimark prograni. k\e see that
CPI contribution of TLB misses falls below 0.01 for all our programs fbr a 6.1 entry unified TLB:
for half the benchmarks, it is below 0.01 even for ar 32 entry TLB.

5.6 Validation

To validate our simulations. we ran each of the benchmarks five timies on a DECStation 5000/200
(running Mach 2.6) and measured the uise.r timi for each run. The programrs were itii on a
lightly loaded machine but not in single-miser imile. The sinitlatitons \i% tII, rih( (,l10'(,1( .,1bb1O,'k
placement. 64K direct-mapped caches. 16 byte blocks, and 64 entry TLB corresponds closely to Trhe
DECStation 5000/200 with the following important differences:

" The simulations ignore(l the effects of context switches ands systeni calls. Tius. act mial piograni
runs suffered more data and instruction cache misses than those reported by the simulations
[36].

" The simulations assumed a virtual address=:physical address mapping. Kessler and Hill [29]
show that random mapping (as used in the actual runs) can have many more conflict misses
than a careful mapping (such as that assumed by the simulations). Thus. lhe actual runs
probably suffered more conflict misses than those reported by the simulations.

" The simulations assumed that all instructions take exactly one cycle (plus tuenmory subsysteni
overhead). Some of the benchmarks do multiplications and (livisions (both of which take more
than one cycle). Thus, the actual program runs may take more cycles to comiphete than the
cycles predicted by the simulations.

In order to minimize the memory subsystem effects of the virtual to physical mapping and

context switches, we took the minimum CPI of the five runs for each program and compared it
to the CPI obtained via simulations. We present our findings in Table 8: .1[masurcd (s.c) is the
user time of the program in seconds; Measured CP1 is the CPI obtained from tIhe measuredI time:
Simulated CP! is the CPI obtained from the simulations: Difference is t he difference between t lie
measured CPI and the simulated CPl; Discrepancy is the difference as a percentage of ineasired
CPI.

Table 8 shows that with the exception of PIA and VLIW. the discrepancy is small (i.'.. less
than 10%); the actual runs validate the simulations. The discrepancy in PIA and VLIW is due
to the significant number of multi-cycle instructions they execute 21. Table 9 lists the multi-c'ycle
instructions executed by each program"2 . Total is the percentage of instructions which are divisions.

21 In this section, inulti-cycle instruictionis refer to iniieger intiltil)liication and division, and ftoating pi)int otfwtraioil.

"2 2SML/N.1 uses only the -douhlte. versions of each floating point insiruction.
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Program Measured (sec) Meawsured (CPI Simulated CPI Difference Discrepancy () 1
CW 25.83 1.12 1.39 0.113 2. IS
Knuth-Bendix 14.95 1.27 1.21 0.06 5.22

Lexgen 16.13 1.40 1.31 0.09 6.29

Life 17.16 1.23 1.21 0.02 1. 1!)
PIA 6.41 1.43 1.18 0.25 17.62
Simple 29.81 1.33 1.21 0.12 9)03
VLIW 25.61 1.76 1.39 0.37 20.77
YACC 6.58 1.39 1.36 0.03 2.20

Table 8: Measured versus Simulated

multiplications, floating point additions, or floating point subtractions: I Div and I .Iul are the
percentages of integer division and multiplication respectively: F Add. F Sub, F Div. F .Mhl are the
percentages of floating point additions, subtractions, divisions, and multiplications respectively.

The actual impact of multi-cycle instructions on CPI can be determined only by simulations.
This is because on a DECStation 5000/200, the CPU does not need to wait after issuing a multi-
.cycle instruction. However, if the CPU tries to read the result of a multi-cycle instruction, it
stalls until that instruction is complete. Moreover, the number of cycles needed for a floating
point instructions depends on what other operations are currently in progress in the floating point
coprocessor. Table 10 gives the latencies (in cycles) for the different multi-cycle instructions. The
cycles for the floating point multiplication and division are lower bounds.

To test whether multi-cycle instructions could explain the high discrepancies in PIA and( VLIW.
we added the overhead of multi-cycle instructions to the simulated CPI assuming that all multi-
cycle instructions stalled the CPU for the cycles listed in Table 10. This yielded a simulated C'PI
of 1.41 for PIA and 1.59 for VLIW. This reduced the discrepancy to 1.4% for PIA and 9.7% for VLIW.

On examining the assembly code generated for PIA, we found that the distance between mnulti-
cycle instructions and use of their results varied significantly. Moreover. in many instan(es the
assembly cod• had bunches of multiplications and (livisions: these cause resource colnflicts ill Ihe

floating-point coprocessor thiis ('ausi g t hen to have lontger latencies Ihian thosei ii Table I 0. l'lhier,-
fore. without simulating multi-cyclh instnlctiomis. we ca-nnot (let ,rmine their exa('ct pen al il PIA.

26



Program ] Total I Div [I Midi F Add F Sub F Div F NIni
CW 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Knuth-Bendix 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Lexgen 0.04 0.02 0.02 0.00 0.00 0.00 0.00
Life 0.00 0.00 0.00 0.00 0.00 0.00 0.00
"PIA 4.08 0.00 0.00 t.30 0.38 0.84 1.56
Simple 1.67 0.00 0.50 0.30 0.14 0.06 0.67
VLIW 0.95 0.32 0.6:3 0.00 0.00 0.00 0.00
YACC, 0.01 0.01 0.00 0.00 0.00 0.00 0.00

Table 9: Multi-cycle instructions as a percentage of instruction colin!

Integer I Floating Point

Multiplication 13 -1
Division 36 18
Addition -

Subtraction I

Table 10: Multi-cycle instruction cost on a DECStation 5000/200

However, a simple calculation shows that even if each multi-cycle instruction stalls thie (PU for half
the time reported in Table 10, the discrepancy falls well below 10%. Thus. multi-cycle instructions
can explain the discrepancy for PIA.

From profiling VLIW we found that the vast majority of the multi-cycle instructions came from
one routine, mod, in the SML/NJ standard library. On examining the assembly code for mod, we
found that the results of the multiplications were used immediately, and the results of the divisions
were used either immediately or one instruction later. Thus each multiplication stalled the ('PU
for 13 cycles and each division stalled the CPU for 3523 or 36 cycles. Thus. it is reasonable to use
the numbers in Table 10 to compute CPI overhead of multi-cycle instructions. Thus. multi-cycle
instructions can explain the discrepancy for VLIW.

5.7 Extending the results

Section 5.3 demonstrated that heap allocation can have a significant memory subsystem cost if it
is not possible to allocate a new object directly into the cache. In this section, we present and
evaluate an analytic model which predicts the memory subsystem cost due to heap allocation when
this is the case. This model formalizes the intuition l)resented in Section 5.1. It, allows us to predict
the memory subsystem cost due to heap allocation when block sizes, miss penalties, or program
heap allocation rates change. We use the model to speculate about the memory subsystem cost of
heap allocation for caches without subblock placement if SML/N.I were to use a simple stack.

23 Assuming the instruction (always arithmetic) between the division and use of its result hits in th le cache.
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5.7.1 An analytic model

Recall that heap allocation with copyn gaIlrbage collection lypically allocates memory which has
not been touched in a long time. and thus is milikely to he in the cache. '['his is especially trime wlhen
the allocation area does not fit in the cache. [h'is. when newly allocated memory is initialized, wrilt
misses occur. The rate of write misses depends u poll the allocation rate and t lie b)lock size. Given
the rate of write misses, we can calculate the memory subsystein cost. C. (diu to halap allocation.

a = allocation rate (words/useful instruction)
b = block size (words)

rp = read miss penalty (cYcles)
wp = write miss penalty (cycles)

Then under the assumption that the allocation area (loes not fit. in the cache,. i.r. ititializin g

writes miss.

Cwrite alloc = wp * a/b

The cost of allocating one word on the heap, A, will be

Awrite alloc = Wp / 1)

Note that depending on the cache organization, the write miss penalty may be 0.
Under the additional assumption h liat programs touch allocated data, soon aftter it is allocated.

Cwrite no alloc = rp * a//b
Awrite no alloc = rp/b

The cost of heap allocation should account for the difference in simulated C(PIs when the write
miss policy is varied for the SML/NJ benchmarks, since the benchmarks do so few assignments.
That is,

Cwrite alloc/no subblock • CPIwrite alloc/no subblock - (PIwrite alloc/subblock

Cwrite no alloc/no subblock • CPlwrite no alloc/no subblock - C"Pwrite alloc/subblock

Table 11 shows the average percentage difference between the cost of heap allocation, C, and the
differences in the CPIs. The percentage difference for write allocate/no subblock, D. was calculated
as

CPIdiff - CP'write alloc/no subblock - CPlwrite alloc/su1)block

Cwrite alloc/no subblock- ("PTIdiff
Dwrite alloc/no subblock = (APIdiff

The percentage difference for write no alloc/no .subblock was calculated similarly. We lixedl
the block size to be 16 bytes. Recall that the miss penalties are wp = rp = 15. We calculated
the allocation rates (Table 12) for programs by using the allocation information from Table .I and
instruction counts from Table 3. The average was the arithmetic mean. The average dlifference
when the allocation area does not fit in the cache (128K or less) is small (2-32%). When the
assumption that the allocation area dloes not fit in the cache is violated. the mo(lel is inaccuraite, as
expected. The percentage diifference hmea(ls towards infinity a' (v'lilf I)becomes very small. 'Hills.
this model can be used to predict t. lie memory sim )systvm cost of' lica ailloc;a1tin mih"fr sm all
cache sizes.
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Cache size Dwrite no alloc/no sibl)block Dwrite alloc(/nfo sai)lhlock

(Kilobytes) ( Y, ) (__ _,Z)

SK 7.12 2.1
16K 6.18- 2.2
:32K 7.02 2.2
64K 1().,S 5.7
128K :3 1.x 23.5
256K 128.8 111.1
512K 1847.7 1746.2

Table 11: Percent difference between analytical rnodel and simulat.ions

Program Allocation rate Allocation rate
including callee-save conts. excluding callee-save conts.

(words/useful instruction) (words/useful instruction)
CW 0.12 0.0-1
Knuth-Bendix 0.23 0.12
Lexgen 0.11 0.03
Life 0.11 0.02
PIA 0.17 0.13
Simple 0.14 0.05
VLIW 0.16 0.06
YA(C'C 0.14| 0.07
Median ).14 0.05

Table 12: Allocation rate for benchmarks. including and excluding; callve-save continuations. which
can be stack-allocated.
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P~rogrami
________________(cvcles/ inst ru ction

('X 0.15
Knuth-Bendix 0.14-
Lexgen 0.12

Life 0.09)

Simple 0.170
Vl1WX% 0.23
YACIC 0.2.1

Table 13: Assuming procedure activation records are stack allocated in SNML/N.1. this tablp presents
the expected memory subsystem cost of heap allocation for caches without subblock p)lacemlent

-5.T.2 SML/NJ with a stack

We can use this model to speculate about the miemnor subsv' steni cost of heap allocation in SML/NJ
when a stack is used. In the abhsenice of first -class cont iniiat ions, Which thle benchnmarks (do not ltse.
callee-save continua tions c-an b~e vasi l si ack-a Ilocal Pel. The ('a lee-sa ye conIi nntat inns Cornespond utoIt
procedure activation recordIs. 'Ia ble 12 shiows t hat ,T ack-allocatiiig callev-:sa y coint in at i(M. iIV wiiid
greatly reduce the allocation rate of the benchmiiarks.

Assuming only continuations are sta('k-allocatedl. Table 1:3 presents an estimiate of the niemor Jy
subsystem cost of heap allocation for caches t hat do not have sit 1llock p)lacem~en t an are too smiall
to hold the allocation area. The block size is 16 l)v' tes. the read miss penalty 15 cycles. and the
write miss penalty for the no-subblock caches 15 cycles.

This is an upper bound estimate of expected memory subsystem cost of heap allocation with
"a stack because it may be possible to stack-allocate additional objects [3 1]. Wve see t hat even with
"a simple stack. the memory subsystem costs due to heap allocation for caches without stibbllock
placement will probably lbe significant for SNIL/N.J programs.

5.8 Summary of Results

Contrary to what other researchers have speculated, we have found that the memory subsystem
performance of SML/N.T is quite good on some real machines. Of the cache organization p~arameters
we studied, write allocate/subblock placernenI with a subblock size of I word is most important
for good performance of SML/N.J programs. However, small caches perform b~adly for all cache
organizations. Also. DEC'Stations are the only' machines whose caches have subblock placement
with a subblock size of I word: thus. thle memory subsystemn performance of SMIL/N.l programis is
bad on most current machines.

Higher associativity and larger block sizes also imniprove performance buit ht lie ;uproveineut is not
as significant as that offered 1t*w sitbblock p~lacemeni'rt. Larger cache sizes also im lprovv( p~erformnauce.
but for cache sizes uip to 1 28K the ituprovvement is small. For six of the benchnmarks. increasing the
cache sizes beyond 128K allows the allocation area to fit in thep (cache: thtus increasing the cache
size beyond 128K can be profitable.

Most surprisingly, higher associativit *y and larger cache sizes (lip to 128K) have little effect on
the performance of the dlata cache: most of tflip overall improvement ob~served is in fthe inst ruction
cache. The had locality of t he inst ruct ions dIne to smnall fNrnct ions andl frequient calls leads to iual 'nv
conflict muisses in the inistruict ion cache. wIi ichI cani he all1eviat ed by going Io a larger cache size or.
higher associat ivity.
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W~e found fast page mode writes to be very* effective inl ab~sorbintg thle hImrstv writes of.SM 17 N.\I
programs. IIn memiory subsystemis wit It. page-mlode writes, Ithe writI e-n [Ife Fodept III Ia Iot I uII p r;I aIII
a one-deep write buffer performed almost ats Well ats at six-deep write blif fer. IIlivilo ii ye n lb 'v11 vst 14,11.,
without page-mode writes. the write buffer-depth was imiportant: a one-deep wriite hu W~et performied
much worse than a six-(leep write lbuffer.

Finally, we found the p~enalIty (Itle to U I.B misses to be small For 'I'I.Bs wit It 32 ()- nitore ent rieo..

6 Future Work

We suggest three direct ions inl whtich this st tidy cani be extenided:

"* measuring the impact of other rirchitect iiral feat mires niot explored iii Ii his work.

"* measuring the imp~act of (differenlt comtpilatioti t eclriipiues. amidl

"* measuring other aspects of programs.

Regarding architectutral ffatures. there is a nweed to explore mnemlory slitbsvsm ent lerf,0rmn1aitCe
of heap allocation oiln tewer machines. As CP Us get faster relative to iatl ain mietiOr'V . IlViitemn*rV
subsystem performance becomes even more c:rucial to goodl p)(rforim~itce. ITo alddres:, thle increa~s-
ing discrepancy b~et woee ( 'PIT SpeC5 a tid iaiatit inetttor 'v speeds. iiewer na cltii nes. ~iichi ;I,, Al phia
workstations [20]. often have levat res siich its socottlarv cachtes. st reaiii ii lfer,. aild eI-(.. ei sor -
boarding.

Secondary caches imtprove performance 6~Y red ucffig a ccsses to in am mlemory. St rea iil him ffrs
andl score board ing iminprove p~erformancite bY redlttcittg thle latenlcv of cache iii isses. The ilmitpact ol'
these features on metumorv stits I sst entt perl'Oriliht~e c-aim he detetnlliiied omllY bY silimiimlt lowis. lPrevoiiS
work has addressed at least two of' I lie feat ii res iii isolation: Short ;t t(l Loevy [ 12). Bor- fi / W. [ 103.
and Przybylski [39] study two-level caches. .Jou ppi [26i] studi~ies st reamibt hiferols. a mtd ( heti anmd Blaer
[13] study scoreboarding. However, we are not aware of any puiblishied work which has stuidied a
memory subsystem with all (or a combinmation) of these features. Also. we a~re tnot aware of ;itv\
work evaluating the impact of these features onl heap allocationl.

Regarding different compilation techniques, the impact of stack allocationi is worth mimeasutring.
A stack reduces heap allocation (which performs badly onl most mienory subhsystemi organizatimons)
in favor of stack allocation (which can have good cache locality since it focutses most oftI lie references
to a small part of memory. namely the top of the stack). For SM 17 N.J progratms. the nidiorit y
of heap allocated objects can be allocated on tilie st ack (T'lable 1). Th'lerefore stack allocat ioii
can substantially improve performance of SMVL/N.1 programs oti mnentorv' organizations wit homit
subblock placement or with small cache sizes. However, stack allocationl call slow dlownt exceptions.
first-class continuations, and threadls. A carefulI study is tneeded to evaluate thie pros and coltis of'
doing stack allocation. We are currently' working ott this.

Regarding measuring other aspects of prroflmmrs. several areas seemn pronmisitig for future work:

1. Measuring the impact of dlifferent garbage collectiotn algorit. t its ott cache perhrntatialce. Soitte
work has already bePen dlone on t his butl tnore needIs to be (lotte (see Sectlioti 3).

2. Mfeasuring the impact of changing various garbage collector paramtet ers (suich as allocat iotm
area size) on (-ache p~erformance. We are currently working oil t his.

3. Measuring the cost of various operations related to garbage collect iot: tagging. store checks.
an(I garbage collect ion checks. A\ jrelintina~rY st iidv of tIt is is r~l)ort ed in [ 15].

L.. Measuirinig t he immipact of optl i IIIizatI iomts oI) cachf et-1,0'i't 1 t uiiam(. 0f spocia Iu eti here is t" lieiv1 1I(
effect of' fit tict loti imlimuing i. Wev aI e curret livi I Yworkim4i otl t his.
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7 Conclusions

We have studied the memory subsystent performance of heap allocation with Copyin1g garbage
collection, a general automatic storage management technique for modern programming languages.
Heap allocation is useful for implementing language features such as list-processing, higher-order
functions, and first-class continuations where objects may have indefinite extent. however, heap
allocation is widely vbelieved to have poor memory subsystem performance [38. I8. 19. 50]. This
belief is based on the high (write) miss ratios that occur when new objects are allocated and
initialized.

We studied the memory subsystem performance of mostly-functional SMIL pror ('ompailed
with the SML/N.I compiler. T'hese p)rogramns hieap allocate at intensive rates. They use hieap-only
allocation: all allocation, including activation recor(ls. is done on the heap. We silnilatied a wide
variety of memory subsy.,tenms typical of ctirrent workstations.

To our surprise, we found that heap allocation perfbrnmed well on sonme ivieniory sitlbs'stinis. In
particular. on an actual machine (the DECStation 5000/200). the memory siibsystem performance
of heap allocation was good. However, heap allocation performed poorly on most memory subsys-
tem organizations. The memory subsystem property crucial for achieving good performance was
the ability to allocý -e and initialize a new object into the cache without a penalty. This can be
achieved by having subblock placement or a, cache large enough to hold the allocation area. along
with fast page-mode writes or a sufficiently deep write buffer.

We found for caches with subblock placement . the arithmetic mean of the dala cache l)(nalty
was under 9% for 6l4K or larger caches: for cac;hes wil hout sibl)l)lo('k plach|i'net . lie ivncai of he
data cache penalty was ,)ofte hig-her tl iati .0) . WO also foiind thmat ai (ache siz(, of' .)121K allowod tlie

allocation area for six of thIe benchmark progranis to fit in the cache, which sujbstant ially itiproved
the performance of cache organizations without sub block I)lacement.

The implications of these results are clear. Vi'rst. a slack is not iee I cl to achliive good inenioryV
subsystem performance. Given the right meinorv subsystem, hleap) allocation of procedlure acti-
vation records can also have good memory subsystem performance. Ileap allocation can be used
without a performance penalty in place of stack allocation, even though it is a more general storage
management technique. Second, computer architects can better support modern languages which
make heavy use of dynamic storage allocation on machines with small primary caches byI using
subblock placement with a subblock size of I word.
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